Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(24)2022 Dec 10.
Article in English | MEDLINE | ID: covidwho-2155136

ABSTRACT

Capsid protein of Hepatitis E virus (HEV) is capable of self-assembly into virus-like particles (VLPs) when expressed in Nicotiana benthamiana plants. Such VLPs could be used as carriers of antigens for vaccine development. In this study, we obtained VLPs based on truncated coat protein of HEV bearing the M2e peptide of Influenza A virus or receptor-binding domain of SARS-CoV-2 spike glycoprotein (RBD). We optimized the immunogenic epitopes' presentation by inserting them into the protruding domain of HEV ORF2 at position Tyr485. The fusion proteins were expressed in Nicotiana benthamiana plants using self-replicating potato virus X (PVX)-based vector. The fusion protein HEV/M2, targeted to the cytosol, was expressed at the level of about 300-400 µg per gram of fresh leaf tissue and appeared to be soluble. The fusion protein was purified using metal affinity chromatography under native conditions with the final yield about 200 µg per gram of fresh leaf tissue. The fusion protein HEV/RBD, targeted to the endoplasmic reticulum, was expressed at about 80-100 µg per gram of fresh leaf tissue; the yield after purification was up to 20 µg per gram of fresh leaf tissue. The recombinant proteins HEV/M2 and HEV/RBD formed nanosized virus-like particles that could be recognized by antibodies against inserted epitopes. The ELISA assay showed that antibodies of COVID-19 patients can bind plant-produced HEV/RBD virus-like particles. This study shows that HEV capsid protein is a promising carrier for presentation of foreign antigen.


Subject(s)
Artificial Virus-Like Particles , Capsid Proteins , Hepatitis E virus , Humans , Capsid Proteins/metabolism , COVID-19 , Epitopes , Recombinant Proteins , SARS-CoV-2/metabolism , Tobacco , Antigen Presentation , Plants, Genetically Modified , Recombinant Fusion Proteins/biosynthesis
2.
Science ; 374(6575): 1626-1632, 2021 Dec 24.
Article in English | MEDLINE | ID: covidwho-1501519

ABSTRACT

Efforts to determine why new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants demonstrate improved fitness have been limited to analyzing mutations in the spike (S) protein with the use of S-pseudotyped particles. In this study, we show that SARS-CoV-2 virus-like particles (SC2-VLPs) can package and deliver exogenous transcripts, enabling analysis of mutations within all structural proteins and at multiple steps in the viral life cycle. In SC2-VLPs, four nucleocapsid (N) mutations found universally in more-transmissible variants independently increased messenger RNA delivery and expression ~10-fold, and in a reverse genetics model, the serine-202→arginine (S202R) and arginine-203→methionine (R203M) mutations each produced >50 times as much virus. SC2-VLPs provide a platform for rapid testing of viral variants outside of a biosafety level 3 setting and demonstrate N mutations and particle assembly to be mechanisms that could explain the increased spread of variants, including B.1.617.2 (Delta, which contains the R203M mutation).


Subject(s)
Artificial Virus-Like Particles , Coronavirus Nucleocapsid Proteins/genetics , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Animals , Cell Line , Coronavirus Envelope Proteins/genetics , Coronavirus Envelope Proteins/metabolism , Coronavirus Nucleocapsid Proteins/metabolism , Evolution, Molecular , Genome, Viral , Humans , Phosphoproteins/genetics , Phosphoproteins/metabolism , Plasmids , RNA, Messenger/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Viral Genome Packaging , Viral Matrix Proteins/genetics , Viral Matrix Proteins/metabolism , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL